Definition of Hausdorff metric

1. Noun. (analysis) In the abstract metric space of all compact subsets of \mathbb{R}^n, given a pair of compact sets ''A'' and ''B'', the Hausdorff metric is h(A,B) = \mbox{max} \{\rho(A,B), \rho(B,A)\} where \rho(A,B) = \sup_{a\in A} \inf_{b\in B} \, d(a,b) , where ''d'' is the Euclidean metric in \mathbb{R}^n. ¹



¹ Source: wiktionary.com

Hausdorff Metric Pictures

Click the following link to bring up a new window with an automated collection of images related to the term: Hausdorff Metric Images

Lexicographical Neighbors of Hausdorff Metric

Hattie
Hattiesburg
Haubenfelder
Hauch
Haudek's niche
Hauler
Haumea
Haunebu
Hauptmannian
Haurvatat
Hausa
Hausa Sign Language
Hausdorff
Hausdorff content
Hausdorff dimension
Hausdorff metric (current term)
Hausdorff space
Hausdorffness
Hausfrau
Hausfraus
Hausmaistas
Haussa
Haussmannization
Haussmannizations
Haute-Loire
Haute-Normandie
Haute-Vienne
Havana
Havana Brown
Havanan

Other Resources Relating to: Hausdorff metric

Search for Hausdorff metric on Dictionary.com!Search for Hausdorff metric on Thesaurus.com!Search for Hausdorff metric on Google!Search for Hausdorff metric on Wikipedia!

Search